Int. J. Selids Structures, 1967, Vol. 3, pp.743 to 755. Pergamon Press Ltd. Printed in Great Britain

SHAKEDOWN LOADS FOR RADIAL NOZZLES IN
SPHERICAL PRESSURE VESSELS

F. A. Leckis and R. K. Penny

Department of Engineering, University of Cambridge

Abstract—Lower bound estimates have been found of shakedown values for pressure and thrust and moment
loadings applied through a radial nozzle in a spherical pressure vessel; the nozzle can be flush or protruding.
These have been achieved by using Melan’s theorem and by exploiting elastic solutions already available. The
results were obtained by using standard linear programming techniques and have been presented in a useful
graphical form.

NOTATION
HM edge force and bending moment respectively per unit circumference
M, m external nozzle moment and moment shakedown factor
. p pressure and pressure shakedown factor
0.4 external nozzle thrust loading and thrust shakedown factor
R,r radii of spherical and cylindrical shells
Tt thickness of spherical and cylindrical shells
o, By, 0 residual stress group factors
0, ¢ angles of longitude and latitude in spherical shell

. R
p geometrical factor for spherical shell [:: I% ’\/[?‘B
a normal stress
o* yield stress in simple tension
INTRODUCTION

IN present day designs the stresses which occur at the junction of nozzles in steel pressure
vessels are normally high enough to cause plastic deformations. While it is possible to
calculate the stress and strain distribution in the elastic—plastic range, the results of these
calculations are of limited use because they are so dependent on residual stresses and
loading history. Ultimate load and shakedown performance however are history in-
dependent and for that reason do provide real guidance in making design decisions.
When a structure is subjected to static loading then a knowledge of the ultimate load is
usually sufficient. However, when the loading is cyclic, shakedown performance becomes
important. If the cyclic loading is kept within the shakedown limit then the designer is
assured that, after initial plastic deformation, further deformation is in the elastic range,
and that the possibilities of incremental collapse or reversed plasticity are removed. ‘
Ultimate and some lower bound estimates of shakedown pressure have already been
obtained for the radial nozzle [1-3] intersecting a spherical pressure vessel (Fig. 1). In
[3] it was shown that the lower bound shakedown estimates can be obtained by using
Melan’s Shakedown Theorem [4] in conjunction with the results of a previously computed
elastic analysis. This procedure is repeated in the present paper but this time other loadings
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FiG. 1. Shell geometry and loading.

that are liable to occur during the operation of the pressure vessel are considered. These
are the cases of a thrust and a moment applied to the nozzle ; in addition the flush and the
protruding nozzles are considered.

Finally, since it is very likely in practice that the above loadings will occur simul-
taneously, it is of considerable interest to determine to what extent these interact. In the
paper this problem is considered in detail and interaction surfaces for the shakedown loads
are generated.

ASSUMPTIONS AND DEFINITIONS

In practical pressure vessels it is found [5] that the maximum stresses occur in the spher-
ical portion at the point of intersection, although in some exceptional geometries, when the
nozzle is very thin [6], or the opening is large, maximum stresses can occur in the nozzle.
Such exceptional cases are excluded here, and the investigation is confined to a study of
stresses in the sphere ; this is not a necessary restriction, however. The material of the shell
is assumed to be elastic/perfectly plastic, and to yield according to the Tresca yield criterion.
Accordingly if the stresses at the surface are o, in the meridional direction, o, in the
circumferential direction, and if the radial stress is neglected then the yield criteria are

logl < 6% log < o% o, —04 < 0o* ()

where o* is the yield stress obtained from a simple tension test.

L.l
T

F1G. 2. Edge forces for axisymmetric loading.
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THE ELASTIC SOLUTIONS

Elastic solutions are available [7] for the present shell geometries subjected to pressure,
thrust and moment loadings. The solutions were obtained using the usual procedure of
shell analysis of superimposing on to the membrane solution the effects of the edge forces
which ensure compatibility of displacements of adjoining shells at their junction. In the
case of the axisymmetric loadings of pressure and thrust the two self-equilibrating edge
forces are the horizontal force H and the moment M (Fig. 2). In the case of the moment
loading two independent self-equilibrating edge force groups are also available [7]. These
edge groups are illustrated in Fig. 3, the forces varying around the circumference according
to the sine or cosine of the longitudinal angle 0.

FiG. 3. Edge forces for moment loading.

THE SHAKEDOWN CALCULATION FOR PRESSURE THRUST AND
MOMENT APPLIED SEPARATELY

The proposed calculations are based on Melan’s theorem [4] which states: if any
distribution of self-equilibrating residual stresses can be found which, when taken together
with the *‘elastic’ stresses (i.e. assuming perfectly elastic behaviour) constitute a system of
stresses within the yield limit, then the structure will shake down.

The purpose of the present paper is to generate suitable self-equilibrating residual
stress distributions which, in themselves, do not violate the yield conditions. The residual
stress distributions are optimized to give the highest load such that the total of the elastic
stresses due to the loads and the residual stresses do not exceed yield. The shakedown loads
so determined are always less than the actual values since the structure automatically
finds the best residual stress distribution, a circumstance which is very unlikely with
assumed stress distribution.

In the case of the shell structure under consideration, the local increases of stress are
due to the edge forces H and M, and in order to counteract their effect it would seem
reasonable to postulate residual self-equilibrating edge forces H and M in directions
opposite to those of H and M. Within the shell itself, suitable stress systems in equilibrium
with H and M are provided by the linear elastic theory.
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In the following calculations it is generally not convenient to deal with the single
effects of H and M, but to consider rather, the effects of a force group (H, M) in which H
and M remain in a fixed proportion.

(i) Pressure loading

For a geometry with given valuesof r/R, R/Tand t/T = (t/T), the stresses at the junction
(where they are most severe)are:

Inner surface Outer surface

04/0* Pi1D P12P
ggfc* Pi3P Pral
where
- PR
b 2To*

The stresses caused by the edge forces (H,, M) acting alone are found by subtracting
the membrane stresses, leaving the following stresses:

Inner surface OQuter surface

0¢/0* (p1,—1)p (Pi2—DPp

oola* pi:—1)p (Pra— 1P

If residual values H, and M, are chosen such that H; = (—a/p)H, and M, = (—a/p)M,
then the maximum residual stresses are:

Inner surface Outer surface

0'¢/U* —(p11— —(p12— e
2
Gofo* —{pi3— —{p1a— 1

These stresses will be referred to as the « residual stress group.

A second set of residual stresses can be found by using the results of the elastic calculation
for the same values r/R, R/T but using a different value for t/T = {t/T),. This ensures that
the edge forces H, and M, resulting from such calculations are in a proportion different
from that of the H,, M, edge forces. Proceeding as for the o residual stress group and
assuming this time residual values of H, = —{(8/p)H, and M, = —{B/p)M, then the
stresses resulting from the f residual stress group are:

Inner surface Outer surface
G’¢/€7* —{p2— 1B —{p22— 1B
aofo*  —(py3—1)B —(p24a— 1B 3)

Other stress residuals determined in this way, by selecting another thickness ratio
{t/T), say, would simply be a linear combination of the previous two results since, at the
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level of the present calculations, the only unknowns are the residual horizontal force H
and the residual moment M.

Using the o and B groups as the assumed residual stresses the total elastic and residual
stresses in the loaded state are:

Inner surface Outer surface
0'4;/0'* PiP—P11—Da—(p21— DB p12b—(p12— Da—(p,,—1)B
06/0* P1ap—(Pr3—1a—(p23— 1) P1ap—(P1a— Da—(pra—1)B )

and in the unloaded state the stresses are given by the above stresses with p = 0.

The problem is now to find the values of « and # which maximize the value of p according
to the 12 limiting conditions
0‘¢ —_ Go

[
Py
BT - N

<1 ()]

for the inside and outside surfaces and in the loaded and unloaded conditions.

This problem can be classified as falling within the ““standard form™ of linear program-
ming.

The standard form of linear programming can be stated as follows: maximize f = ¢;x;
subject to the conditions

by <y =ayx; <b{; b} and b}
are the lower and upper values of a fixed vector. In the present case
bi={-1-1-1-1-1-1-1-1-1-1-1-1}
bi={1 1 1 1 1 1 1 1 1 1 1 1}

P =Py, —1) —(p21—1) ]
P13 ~(Pi3—1) —(P23—1)
P11 P13 —(P11—P13) = (P21~ P23)
P12 —(p2— 1) —(p22—1)
Pia —(P1a—1) —(p2a—1)
4; =| P12—Pi1a ~(P12—P14) —(P22—P24) (6)
0 ~(p1:—1) —(p21—1)
0 "(Pla_l) —(p23—1)
0 —(P11—P13) —(P21—P23)
0 ~(P—1) —(p22—1)
0 ~Pr—1)  —(paa—1)
| 0 ~(P12—P1a) —(Pzz—P24)_

x={p « B} ¢={1 0 0
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This process was performed on a computer for a large number of shell geometries for
both flush and protruding nozzles. Plotting the shakedown pressures on the basis of the
geometric parameter [7] p = r/R\/(R/T)yields the graphs shown in Figs. 4(a) and 4(b).
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F1G. 4(b). Shakedown values for pressure loading (protruding nozzie).
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(i) Thrust loading

The shakedown calculations for thrust loading are similar to those for pressure loading.
For the geometry r/R,R/Tand t/T = (¢/T), let the maximum stresses be :

Inner surface Outer surface

U¢/U* 9119 4129
oo/c* q139 q149
where
0 R
1= 1T

Suitable residual stresses are those resulting from the o and § groups obtained pre-
viously. The procedure follows that outlined previously, and the results obtained for the
shakedown thrust loading are shown in Figs. 5-7.

(iil) Moment loading

When the nozzle is subjected to a moment load the meridional stress o, and circum-
ferential stress a, vary according to cos 6, while the shear stress o, varies according to
sin 0. Experience shows that ¢4, can be safely neglected by comparison with ¢, and o,
and consequently the stress conditions at 0 = 7/2 are neglected. The maximum values for
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FIG. 5(a). Shakedown values for thrust and moment loadings (flush nozzle).
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F1G. 5(b). Shakedown values for thrust and moment loadings (protruding nozzle).
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FIG. 6(a). Shakedown values for thrust and moment loadings (flush nozzies).
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FiG. 6(b). Shakedown values for thrust and moment loadings (protruding nozzles).
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F1G. 7(a). Shakedown values for thrust and moment loadings (flush nozzle).
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FiG. 7(b). Shakedown values for thrust and moment loadings (protruding nozzles).

o4 and o, are at 6 = 0 and 6 = 7. Since however they vary according to cos ¢ only the
values at either 8 = 0 or # = & need be considered. Let the maximum elastic stresses for
the geometry r/R,R/Tand t/T = (¢/T), be given by

Inner surface OQOuter surface

o,4/0* m,,im my,im

Gelo* m,;m my i

M, |R
Sp—N

The stresses caused by the edge forces are

where

Inner surface OQOuter surface

0,/0% (my—mym  (my,—my)m
og/c*  (my3—mgm (m 4 — mg)im

where m, = —m, = 1/p are the membrane stresses at the junction due to the applied
moment.
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Hence the y residual stress group yields

Inner surface Outer surface
a¢/cr"‘

ag/o*

“(mu_mqs)'}’ —(m,2-m¢)}’

—(myz—mply —(mya—myy

The 6 residual stress group is determined in the same way by using the elastic solution for
the geometry r/r, R/T, (t/T),,(t/T); # (t/T), so that

Inner surface Outer surface

o4/0*

G4/0*

—(my, — m¢)5 —(my;— m¢)5

—(my3—mg)d  —(mys—mg)d

The procedure again follows that outlined previously. The results of the shakedown
loads are shown in Figs. 5-7.

INTERACTION SURFACES FOR SHAKEDOWN LOADS OF PRESSURE
THRUST AND MOMENT

The aim is to obtain the shakedown interaction surface for p, § and m, the loads being
allowed to vary arbitrarily between the limits 0 and p, 0 and § and 0 and 7.

Because the stresses arising from pressure and thrust loadings are axisymmetric and
the stresses arising from the moment loading vary as cos 6, then the stresses must be studied
at 0 = 0,and ¢ = = In addition to the elastic stresses caused by the three loadings, residual

stress groups of the a, 8, y and d types will yield the following total stresses

Inner surface

Outer surface

04/0* Py Pt+qgtmym P12P+ g2 +mym
@=0 —(p,,—Da—(p— DB ~(p12— Do~ (p,— 1B
“‘(mnx_m¢)')’*‘(m21—m¢)5 —(my,—my)y—(my, —my)é
oo/0* P13P+q13§+msm PiaP+qiag+mym
=0 —(p;—o—(ps—1)B —(pra—Doa—(p2s—1)B
—(my3—mply —(my3—my)d —(my 4 —mg)y —(my —mg)o
G4/6* Py P+qd—my P12P+g124—m M
H=mn —(p,—Da—(pz—1B —{p12—Da—(py,—1)B
+(myy —my)y+(my, —my)d H My, —mg)y +(my, —y)d
0¢/0*  P13P+4qi3§—mym PraP+qiad—mym
O=n —(ps—Da—(p;z—1)B —(Pra—Da—(pys—1)B

+(my 3 —mgly + (my 3 —mg)o

+(my g —mgly +(myy—mg)é
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The conditions (5) must now be applied at § = 0 and 8 = = as well as to the inner and
outer surfaces. Since the pressure, thrust and moment may vary independently between 0
and p, 0 and ¢ and 0 and m, the problem no longer falls within the category of standard
linear programming, but may be made to do so.

The new problem may be stated as follows: two vectors x; and z, satisfy a system of
inequalities

X
VE < [ay a;.;][z’]s y )
k

It is required to find a vector x; which satisfies (7) for all values of z, lying within certain
limits and which maximizes the function f = ¢;x;. The limits on z; are such that

g <z < gk
Rewrite equation (7) in the form:
Vi—ahz, = iz < a;x; < di(ze) = Vi—apz,

This is not equivalent to the standard form since ¢ and ¢¥ are functions of z,. However,
for each value of i the upper and lower limits ¢¥ and ¢¥ can be found so that:

bt = max{gH(z)} = Vi-+ max(—aja)
B! = min{¢¥z,)} = V*—max(akz,). (8)

The value of max(a}z,), for example is determined by noting that if a; is positive the
corresponding value taken for z, is g¥ and if a}, is negative the corresponding value taken
for z, is gL. In these circumstances equation (8) reduces to the form

bf = VE-Y 4{(1 —sign af)algi + (1 +sign a})aligr}
k

b = Vi—3 ${(1+sign af)ajgy+(1 —sign af)ajigy} ©)
k

S

3|31

Fig. 8. Interaction surface for pressure, thrust and moment ioadings.
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The procedure to be adopted is to choose values of § and i, form the limits bf and b¥
and then proceed according to the standard linear programme to find the corresponding
value of p.

For the geometry r/R = 0-10, R/T = 90, ¢/T = 0-50 the interaction surface obtained is
shown in Fig. 8.

It is not difficult to show that an interaction surface of the form p/p, + §/g, -+m/m, = 1
is on the safe side and the result of Fig. 8 supports the use of this simple formula. This
formula together with the values of p,, g, and M, given in Figs. 4-7 is then a reasonable
design method.
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and advice in adapting standard linear programming techniques to the problem discussed in the paper.
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Résumé—Des évaluations de limites inférieures ont été trouvées pour des valeurs de traitement au départ pour
des charges de pression, de poussée et de moment appliquées par un bec radial dans un réservoir a pression
sphérique; le bec peut étre encastré ou saillant. Ces évaluations ont été obtenues en utilisant le théoréme de
Melan et en tirant parti des solutions d’élasticité déja disponibles. Les résultats furent obtenus en utilisant des
techniques de programmation linéaire standard et ont été présentés sous une forme graphique utile.

Zusammenfassung—Abwirts gerichtete Schitzungen wurden gefunden fiir die Abnahmewerte von Druck,
Schub und Momentbelastung durch eine Querdiise in einem kugelférmigen Druckgefiss; die Diise kann flach
oder herausragend sein. Diese Schitzungen wurden durch Verwendung des Melan’schen Thorems und durch
Ausnutzung bereits vorhandener elastischer Losungen erzielt. Normale lineare Programmethoden wurden
angewendet und die Resultate werden in niitzlicher graphischer Form dargestellt.

AbcrpakT—IIpHBOOATCA HHXKHUE TDAHHYHBIC OLICHKH BE/IMYHH PaspyLICHAS NaBiCHUEM, YIAPOM H MOMEH~
THHIMM Harpy3KaM¥, KOTOPbIE NPHIOXKEHHE! K COCYAY BBICOKOTO NABJICHHS Yepe3 PafMANBHYIO HACAIKY;
9T4 HacaJKa MOXCT HaXOJHTCH Ha OJHOM YPOBHE WIM BRICTYNATh, DTO JOCTUIAETCH MPH MCIOMb30BAHMK
TeOpeMbl Menlaga M MCXOHA W3 M3BECTHEIX YXKe PEUICHHH TEOPHU YDPYTOCTH. Pe3ynbTaThl HONy4aloTcs
HCHIONB3YS CTAHAAPAHYIO TEXHHKY NHHEHHOTO NpOrPaMHPOBaHKSA M NPEACTABICHO B NpHroasol rpadwu-
yeckoit fopme.



